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Winning combinations of history-dependent games

Roland J. Kay* and Neil F. Johnson
Physics Department, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom

~Received 15 July 2002; published 27 May 2003!

The Parrondo effect describes the seemingly paradoxical situation in which two losing games can, when
combined, become a winning game@Parrondo, Harmer, and Abbott, Phys. Rev. Lett.85, 24 ~2000!#. Here, we
generalize this analysis to the case where both games are history dependent, i.e., there is an intrinsic memory
in the dynamics of each game. Results are presented for the cases of both random and periodic switching
between the two games.
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I. INTRODUCTION

The Parrondo effect@1# is the counterintuitive situation
whereby individually losing games somehow ‘‘cooperate’’
produce a winning game. In particular, these losing gam
can be combinedrandomlyand yet the effect still emerges
The intriguing aspect is that randomness in this system
acting in a constructive way. Possible applications of t
effect have been suggested in several fields including biog
esis @2#, molecular transport@3,4#, random walks@5#, and
biological systems@6#. Even in the social sciences, ‘‘win
ning’’ models for investment have been reported@7#.

Consider a gambling game in which the player has a tim
dependent capitalX(t), wheret50,1,2, . . . , andwhose evo-
lution is determined by tossing biased coins. The rules a
which coins to toss, and hence the probability of winnin
are determined by the history, i.e., the game is history dep
dent. The game can be divided into three regimes: winn
losing, and fair@for which ^X(t)& is respectively an increas
ing, decreasing, or a constant function oft]. Parrondoet al.
@1# considered combinations of such a history-depend
gameB, as described above, and a simple biased coin
~i.e., gameA that is historyindependentand hence has no
memory!. In the study of Parrondoet al., gameA is defined
by the probabilityp of X(t) increasing, wherep5 1

2 2e.
Hence, gameA is a losing game fore.0. GameB is defined
by the probabilities of four biased coins:$p1 ,p2 ,p3 ,p4%.
The particular coin played at a given time step depends u
the history of the game as shown in Table I. Parrondoet al.
showed that two losing gamesA andB can be combined to
yield a winning game, if the games are alternated either
riodically or at random.

The reason that Parrondo’s paradox arises for comb
A-B games is that losing cycles in gameB are effectively
broken up by the random perturbation produced by gamA.
The question therefore arises: what happens ifboth games
are of typeB, and hence have losing cycles? Can the los
cycle in one game break up the losing cycle in the othe
order to produce winning dynamics? Since the answer is
obvious, and since the Parrondo effect promises to hav
variety of applications, it is important to establish wheth

*Electronic address: roland.kay@physics.ox.ac.uk
1063-651X/2003/67~5!/056128~6!/$20.00 67 0561
s

is
s
n-

-

to
,
n-
g,

nt
ss

n

e-

d

g
n
ot
a

r

two history-dependent games will indeed produce a Parro
effect. This provides the motivation for the present study

In this paper, we generalize the analysis of Ref.@1# to the
case where both games are history dependent, i.e., there
intrinsic memory in the dynamics of each game. We fi
specific regimes that do indeed exhibit a Parrondo effe
Results are presented for the cases of both random and
odic switching between the two games. The paper is or
nized as follows. In Sec. II, we investigate random combin
tions of two games of typeB. In Sec. III, we consider
periodic combinations of such games. In Sec. IV, we inv
tigate the effect of varying the switching probability. Sectio
V provides a summary.

II. RANDOM COMBINATIONS OF HISTORY-DEPENDENT
GAMES

We now extend the analysis of Parrondoet al. to the case
of two history-dependent games of typeB. We define$pi
2e% and$qi2e% as the probability sets defining theB games
and $r i2e% as the probability set defining the combine
game. We follow Parrondoet al. in only considering the los-
ing games that result by subtracting a small quantitye from
each of the probabilities that define a fair game. As in R
@1#, we can define a vector Markovian processY(t) based on
the capitalX(t) as follows:

Y~ t !5S X~ t !2X~ t21!

X~ t21!2X~ t22!
D . ~1!

TABLE I. Type B games consist of four coins. The coin to b
played at time stept is determined by the results of the previous tw
time steps, as shown.

Time step
t22

Time step
t21

Coin
at t

Probability
of win

at t

Probability
of loss

at t

Loss Loss B1 p1 12p1

Loss Win B2 p2 12p2

Win Loss B3 p3 12p3

Win Win B4 p4 12p4
©2003 The American Physical Society28-1
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Y(t) can take four values (61,61). We label the four state
of Y(t) as shown in Table II.

For e50, bothB games must be fair. This is achieved b
the condition (12p4)(12p3)2p1p250 @1#. This yields the
first two conditions in Eq.~2!. For the combined game to b
winning, we obtain the final condition listed in Eq.~2!:

~12p4!~12p3!5p1p2 ,

~12q4!~12q3!5q1q2 , ~2!

~12r 4!~12r 3!,r 1r 2 .

If the two B games are combined randomly, the probabil
set for the combined game is given by

r i5api1~12a!qi , ~3!

where a is the probability that the game characterized
$pi% will be chosen. We will typically takea5 1

2 . The third
condition in Eq.~2! now becomes

~22p42q4!~22p32q3!,~p11q1!~p21q2!. ~4!

Given that we require the initial games to be fair fore50,
we can use the first two conditions in Eq.~2! to substitute for
p1 andq1. Hence,

~22p42q4!~22p32q3!

,S ~12p4!~12p3!

p2
1

~12q4!~12q3!

q2
D ~p21q2!.

~5!

A. Special casep2Äp3 , q2Äq3

In order to reduce the number of free variables so that
different regions of the parameter space can be displayed
three-dimensional figure, Parrondoet al. @1# made the re-
strictionp25p3. Here, we are going to reduce the number
free variables by appealing to the first two conditions in E
~2!. These conditions givep1 andq1 in terms of$pj%, $qj%
( j 52,3,4) such that both games are fair whene50.

We choose a particular game$pi% and then plot the re-
gions in the parameter space (q2 ,q3 ,q4), which enclose all

TABLE II. Labels for the four possible states of the Markovia
processY(t), whereY(t) is defined in terms of the capitalX(t) as
prescribed by Eq.~1!.

Y(t) State

(21,21) 1
(11,21) 2
(21,11) 3
(11,11) 4
05612
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games$qi% for which the Parrondo effect is observed. In
tially we treat the special case introduced by Parrondoet al.
using the parameter space (q25q3 ,q4), taking for the firstB
game:

$pi%5H 9

10
,
1

4
,
1

4
,

7

10J . ~6!

Rearranging Eq.~2! gives

q15
~12q4!~12q3!

q2
. ~7!

q1 is a probability and is thus subject to the restriction
,q1,1. Therefore, in order to be physically realized, t
game$qi% must be restricted as follows

q4.11
q2

q321
~8!

and hence, in the special case whereq35q2,

q4.11
q2

q221
. ~9!

From Eq.~5!, the condition that defines the regions of th
parameter space in which two fair games combine to yiel
winning game is given by

q4H .11
~p421!

p2
q2 if q2.p2

,11
~p421!

p2
q2 if q2,p2 .

~10!

Figure 1 depicts the regions of parameter space defined
Eqs.~10! and~9! for $pi% given by Eq.~6!. In particular, Fig.
1 shows the region in which two fair games combine to yie
a winning game. This is equivalent to the region in whi
two losing games combine to yield a winning game for so
value ofe.0. In the Appendix, we derive an expression f
the maximum value ofe for which this remains true,emax.

Figure 2 showsemax, given by Eq.~A6! using the same
game set$pi% as in Fig. 1. The value ofemax is shown for all
possible games$qi% given $pi% defined by Eq.~6!. This plot
demonstrates the robustness of the Parrondo effect in
present case of two history-dependent games.

B. General casep2Åp3 , q2Åq3

Now we drop the Parrondoet al. restriction top25p3 and
treat the general case. From Eq.~5!,
8-2
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q4H ,11
~p421!

p2
q2 if q3,11

p321

p2
q2 ,

.11
~p421!

p2
q2 if q3.11

p321

p2
q2 .

~11!

Figure 3 depicts the regions of parameter space define
Eqs. ~11! and ~8! for $pi% given by Eq.~6!. Equation~11!
defines two regions~labeled I and II in Fig. 3!. Equation~8!
excludes almost all of region I in this case. An expression
emax in the general case is derived in the Appendix, Eq.~A7!,
given that$qi% is a fair game fore50. In

FIG. 1. Parameter space for combination of two games in
special casep25p3 , q25q3 with $pi% given by Eq.~6!. Region I
depicts the area forbidden by Eq.~9!. Region II depicts the area
where the two games combine to yield a winning game. The w
region in between represents the area excluded by Eq.~10!, in
which two fair games combine to yield a losing game. The bla
dot represents the parameters for the original game of Parro
et al. as described in Ref.@1# for which $q15

1
2 , q25

1
2 , q35

1
2 ,

q45
1
2 %.

FIG. 2. Plot of the maximum value ofe for which the two losing
games$pi%, defined by Eq.~6!, and $q1 ,q2 ,q2 ,q4% combine to
yield a winning game. The white lines indicate the locus of poi
where emax50. The regions in whichemax,0 correspond to two
winning games combining to yield a losing game. The region to
left of the dashed line is that excluded by Eq.~9!, as in Fig. 1.
05612
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principle, we could plot this over the three-dimensional ax
of Fig. 3. This would be the generalization of Fig. 2.

The original combination of gameA and gameB due to
Parrondoet al. ~see Sec. I! represents a special case of o
more general treatment. The game considered in Ref.@1#
corresponds to combining$pi% as defined by Eq.~6! with
$q15 1

2 ,q25 1
2 ,q35 1

2 ,q45 1
2 %. In Figs. 1 and 3 the black do

represents the original game of Parrondoet al. In both cases
it can be seen to lie in the region where two losing gam
combine to yield a winning game.

Thus, we have derived expressions, Eqs.~10! and~11!, for
the region of the parameter space in which the Parro
effect is observed to occur in the case of history-depend
games being combined with equal probability (a5 1

2 ). We
have also derived expressions for the robustness of the ef
Eqs.~A6! and ~A7!.

III. PERIODIC COMBINATIONS
OF HISTORY-DEPENDENT GAMES

Next, we investigate periodic combinations of gam
Rather than randomly selecting the game to be played
each time step, game$pi% is playeda times and then game
$qi% is playedb times. This cycle is repeated periodicall
Figure 4 shows the capital after 500 time steps, result
from a combination of two games for a range of values oa
andb. The capital is greater if the games are switched m
frequently, as found by Parrondoet al. for the combination
of a simple gameA and a history-dependent gameB. The
analysis for the periodic case is more complex than for
random case because we can no longer appeal to a s
game formed from a weighted average of two games.

Let the elements of the vectorui , labeledui ; j , be the
probability of the game being in statej at time t5 i . The

e

e

k
do

s

e

FIG. 3. Regions of parameter space in which two fair gam
combine to yield a winning game for$pi% given by Eq.~6!. The
planes indicate the boundaries of these regions~themselves marked
I and II!. The unmarked regions are those in which the oppo
effect occurs. The surface~and the inset! shows the boundary of the
region forbidden by Eq.~8!. The black dot represents the origin
game of Parrondoet al. as described in Ref.@1# for which $q1

5
1
2 , q25

1
2 , q35

1
2 , q45

1
2 %.
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evolution of the game fromui to ui 1a1b can be described a
follows:

ui 1a1b5BbAaui , ~12!

A5S 12p1 0 12p3 0

p1 0 p3 0

0 12p2 0 12p4

0 p2 0 p4

D , ~13!

B5S 12q1 0 12q3 0

q1 0 q3 0

0 12q2 0 12q4

0 q2 0 q4

D . ~14!

Clearly, this is not a homogeneous Markovian process
cause the transition matrix is not time independent.

In order to proceed, we define a homogeneous Markov
process described by the transition matrixT05BbAa with
time stepst5(a1b) i , where i 50,1,2,3, . . . . Consider a
large ensemble of games described by Eq.~12! in the long
time limit. Select one of these games at random. The stat
ary stateS0 of the homogeneous game defined byT0 gives
the probability that the selected game will be in each of
four possible states~see Table II! at timest5(a1b) i , where
i 50,1,2,3 . . . . This stationary state is given by the solutio
to the equationS05T0S0. Now we define a new homoge
neous processT1 by cyclically permuting the matrices inT0
once to the right~e.g., if T05BAA , then T15ABA ). The
stationary state of this process gives the probabilities of fi
ing the game, selected from the ensemble, in each of the
possible states at timest5(a1b) i 11, where i
50,1,2,3 . . . .

In the general case, the game formed from thenth cyclic
permutation ofT0 , Tn , gives the probability of finding the
selected game in each state at timest5(a1b) i 1n, where
i 50,1,2,3 . . . . This is illustrated by Fig. 5. We can calcula
the overall probability of a win at time stepst5(a1b) i

FIG. 4. Value of capital after 500 games averaged over an
semble of 53105 runs. Games$pi% @defined by Eq.~6!# and $qi%

5$ 2
5 , 3

5 , 3
5 , 2

5 % are combined periodically fore50. Game$pi% is
playeda times, then game$qi% is playedb times, and so on.
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1n by taking the dot product of the stationary state of t
transition matrixTn , with a vector formed from the prob
abilities of each of the coins from the game played at t
time step. These vectors arep5(p1p2p3p4) and q
5(q1q2q3q4), wherep corresponds toA in Eq. ~13! andq
corresponds toB in Eq. ~14!. The matrix to the right of the
product inTn corresponds to the game that will be played
time stept5(a1b) i 1n. Therefore, if the matrix to the righ
is A, we must take the dot product withp. If it is B, we must
take the dot product withq.

An expression for the average probabilityPwin of a win
for the combined game can thus be found by averaging o
all possible cyclic permutations ofT0. The gradient,
grad@^Xc(t)&#, is then given by Eq.~A1!, as before. The
resulting expressions are lengthy. Each set of values ofa and
b yields an expression for grad@^Xc(t)&# in terms of
$pi%,$qi%, wherei 51,2,3,4. These expressions are too co
plex to set out here explicitly. However, we can numerica
plot the analytic equivalent of Fig. 4: this is what we ha
essentially done in Fig. 6. The lines show the analytic p
diction for the average capital after 500 time step
^Xc(500)&, found by multiplying Eq.~A1! by 500. Each line
corresponds to a slice through the surface in Fig. 4 at c
stantb. The error bars indicate one standard deviation on
mean over ten ensemble averages of the numerical ga
Each ensemble average comprises an average over 5
individual runs.

n-

FIG. 5. Illustration of the time steps at which the stationa
statesSn of the transition matricesTn give the probability of finding
the combined game in each of the possible states.N is an integer
and we take the long time limit~i.e., N→`).

FIG. 6. Comparison of analytical and numerical results for p
riodic switching. The lines show the analytic predictions at const
b, the number of steps of game$qi%, for the capital after 500 time
steps. The error bars show one standard deviation on the mean
ten separate ensemble averages, each comprising 50 000 num
runs.
8-4
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We can see that the numerical and analytical results a
to within one standard deviation. This confirms that the eq
tions generated by the analysis presented in this section
indeed correct. Thus, we have derived expressions for
robustness of the Parrondo effect where two histo
dependent games are combined periodically.

IV. VARYING THE SWITCHING PROBABILITY
IN THE RANDOM CASE

We now examine the dependence of the capital on
switching probability in the case that the games are rando
combined. Figure 7 shows the capital after 500 iteratio
plotted against the probability per iterationa that the game
$pi% will be chosen. The curve is symmetric and demo
strates that the capital is greatest if the games are switc
with equal probability. When implementing the games it
necessary to assign values to the results of the coin toss
times t522,21 in order to seed the game. This arbitra
choice introduces transients that can slightly bias the fi
results. However, by allowing the game to first run for 1
iterations, this effect can be eliminated.

The curve in Fig. 7 represents the capital predicted by
~A3! plotted for alla with the same$pi% and$qi%. The error
bars show one standard deviation on either side of the m
capital, averaged over an ensemble of ten runs. The ag
ment between the theoretical curve and numerical dat
therefore better than one standard deviation. Fora50 or 1,
we find^Xc(500)&50. These values correspond to just pla
ing oneB game or the other. Since both games are fair
e50, the average capital is zero. The fact that the curv
then positive for all values ofa means that combining th
games with any probability 0,a,1 leads to a winning
combined game.

Parrondoet al. showed that combining two losing game
could lead to a winning game because switching between
games can break the cycles that cause the ‘‘bad’’ coins to
overplayed@1#. We might therefore expect that switching b
tween the games frequently~either by reducinga andb or by

FIG. 7. The value of the capital after 500 games averaged o
an ensemble of 500 000 runs. The same games as in Fig. 4
combined, but this time randomly. Game$pi% is chosen with prob-
ability a. The solid line shows the theoretical result predicted
Eq. ~A3!, while the error bars~which are barely visible since the
are so small! indicate one standard deviation about the mean cap
over an ensemble of ten runs.
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choosing a switching probability close to 0.5) results in t
largest capital gain since this will break up the cycles m
effectively. This is indeed confirmed by the results in Figs
and 7.

V. SUMMARY

We have demonstrated that the apparently paradoxica
fect of two losing games combining to produce a winni
game also applies to combinations of two history-depend
games. We derived expressions for the regions of the par
eter space in which the effect is observed for both rand
and periodic combinations of these games. We derived
pressions for the gradient of the average capital and he
the robustness of the Parrondo effect for games comb
randomly or periodically.

Our work has therefore expanded the understanding of
Parrondo effect by demonstrating its existence for new co
binations of history-dependent games. We are now fa
with the more general question as to what property of
constituent games guarantees that the Parrondo effect wi
observed. In addition, if we were to combine many games
a more general nature than those used to date, how coul
predict whether the effect would emerge or not? We ho
that the present work will stimulate further research on su
questions, in addition to pursuing applications of the P
rondo effect itself.
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APPENDIX: DERIVATION OF emax FOR RANDOM
COMBINATIONS OF GAMES

In this appendix, we derive expressions for the maxim
value of e, emax, for which two games that are fair fore
50 combine to yield a winning game.

Let Pwin andPlosebe the probabilities, per iteration for th
combined game, thatXc(t) will increase or decrease, respe
tively. Then the gradient of the capital line for the combin
game grad@^Xc(t)&# is given by

grad@^Xc~ t !&#52Pwin21. ~A1!

One can derive the following expression forPwin for a game
$r i%:

Pwin5
r 1~r 2112r 4!

~12r 4!~2r 1112r 3!1r 1r 2
. ~A2!

Substituting for$r i% from Eq. ~3! yields

er
are

al
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grad@^Xc~ t !&#5
2@~12a!q11ap1#@11~12a!q22~12a!q41a~p22p4!#

@122~a21!q11~a21!q312ap12ap3#@11~a21!q42ap4#1@~12a!q11ap1#@~12a!q21ap2#
21. ~A3!

Now we reintroducee via the transformationspi→pi2e, qi→qi2e to obtain

grad@^Xc~ t !&#5
2@a~p22p4!1~12a!~q22q4!11#@ap11~12a!q12e#

@22ap11ap322~12a!q11~12a!q31e21#@ap41~12a!q42e21#1@ap11~12a!q12e#@ap21~12a!q22e#
21.

~A4!

Any games$pi% and$qi% defined as above will be losing games for all values ofe.0. Thus, in order to find the maximum
value of e for which two losing games combine to yield a winning game, we must find the value ofe for which
grad@^Xc(t)&#50. We shall consider games combined with equal probability, thereforea5 1

2 . Setting grad@^Xc(t)&# equal to
zero in Eq.~A4! gives

emax5
241p1p212p312p42p3p41p2q11p1q21q1q212q32p4q312q42p3q42q3q4

2~41p11p22p32p41q11q22q32q4!
. ~A5!

Appealing to the condition@Eq. ~7!# that $qi% is a fair game fore50 and in the special case whereq25q3 andp25p3, this
becomes

emax5
p2@11q2~11p12p4!2q4#1q2@231p4~22q2!1q21p1q21q4#

2~12q4!12q2~31p12p4!
. ~A6!

Similarly in the general case,emax is given by

emax5
p2@12q41q2p11q3~q421!#1q2@231p4~22q3!1q31q4#1q2

2p11p3q2~22p42q4!

222q412q2~41p11p22p32p4!12q~q22q32q4!12q3~q421!
. ~A7!
et
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