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Winning combinations of history-dependent games
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The Parrondo effect describes the seemingly paradoxical situation in which two losing games can, when
combined, become a winning garffearrondo, Harmer, and Abbott, Phys. Rev. L8§,. 24 (2000]. Here, we
generalize this analysis to the case where both games are history dependent, i.e., there is an intrinsic memory
in the dynamics of each game. Results are presented for the cases of both random and periodic switching
between the two games.
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[. INTRODUCTION two history-dependent games will indeed produce a Parrondo
effect. This provides the motivation for the present study.
The Parrondo effedtl] is the counterintuitive situation, In this paper, we generalize the analysis of R&f.to the

whereby individually losing games somehow “cooperate” to case where both games are history dependent, i.e., there is an
produce a winning game. In particular, these losing gameitrinsic memory in the dynamics of each game. We find
can be combinedandomlyand yet the effect still emerges. specific regimes that do indeed exhibit a Parrondo effect.
The intriguing aspect is that randomness in this system iResults are presented for the cases of both random and peri-
acting in a constructive way. Possible applications of thisodic switching between the two games. The paper is orga-
effect have been suggested in several fields including biogemized as follows. In Sec. II, we investigate random combina-

esis[2], molecular transporf3,4], random walkg[5], and tions of two games of typeB. In Sec. Ill, we consider
biological systemg6]. Even in the social sciences, “win- periodic combinations of such games. In Sec. IV, we inves-
ning” models for investment have been reporfé&d tigate the effect of varying the switching probability. Section

Consider a gambling game in which the player has a timeV provides a summary.
dependent capita{(t), wheret=0,1,2 ..., andwhose evo-
lution is determined by tossing biased coins. The rules as to
which coins to toss, and hence the probability of winning,”' RANDOM COMBINATIONS OF HISTORY-DEPENDENT

are determined by the history, i.e., the game is history depen- GAMES

dent. The game can be divided into three regimes: winning, \We now extend the analysis of Parronetoal. to the case
losing, and fair{for which (X(t)) is respectively an increas- of two history-dependent games of tyfe We define{p;

ing, decreasing, or a constant functiontpf Parrondoet al.  _— €} and{q; — €} as the probability sets defining tBegames

[1] considered combinations of such a history-dependening {r,—€! as the probability set defining the combined
gameB, as described above, and a simple biased coin tosgame. We follow Parrondet al.in only considering the los-
(i.e., gameA that is historyindependentind hence has no jng games that result by subtracting a small quantityom
memory. In the study of Parrondet al, gameA is defined  each of the probabilities that define a fair game. As in Ref.

by the probabilityp of X(t) increasing, wherep=3—€.  [1] we can define a vector Markovian proca4s) based on

Hence, gamé\ is a losing game foe>0. GameB is defined  the capitalX(t) as follows:

by the probabilities of four biased coingp,,p2,P3,Pa}-

The particular coin played at a given time step depends upon

the history of the game as shown in Table |. Parroetal. X(t) = X(t—1)
showed that two losing gameésandB can be combined to Y(t)= .
yield a winning game, if the games are alternated either pe- X(t=1)=X(t=2)
riodically or at random.

The reason that Parrondo’s paradox arises for combined TABLE I. Type B games consist of four coins. The coin to be
A-B games is that losing cycles in garBeare effectively played at time stepis determined by the results of the previous two
broken up by the random perturbation produced by game {ime steps, as shown.

The question therefore arises: what happenisoth games
are of typeB, and hence have losing cycles? Can the losing
cycle in one game break up the losing cycle in the other in
order to produce winning dynamics? Since the answer is nat

@

Probability ~ Probability
Time step  Time step  Coin of win of loss
t—2 t—1 att att att

obvious, and since the Parrondo effect promises to have a Loss Loss B, p1 1-p;
variety of applications, it is important to establish whether  |oss Win B, [ 1-p,
Win Loss B, o 1-p;
Win Win B, P4 1-ps
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TABLE II. Labels for the four possible states of the Markovian games{q;} for which the Parrondo effect is observed. Ini-
processY (t), whereY(t) is defined in terms of the capitl(t) as tially we treat the special case introduced by Parroetial.
prescribed by Eq(1). using the parameter spacgE gs,0d,), taking for the firsB
game:

Y(t) State

(71171)
(+1,-1)
(—1,+1)
(+1,+1)

7
1

11
{pi}=[1 ’Z’Z’_O]' (6)

A WN PR
o

Rearranging Eq(2) gives

Y(t) can take four values# 1,+1). We label the four states (1-9a)(1—qs)
of Y(t) as shown in Table II. Q== B 7
For e=0, bothB games must be fair. This is achieved by a2
the condition (+p,)(1—p3) —p1p>=0 [1]. This yields the
first two conditions in Eq(2). For the combined game to be q, is a probability and is thus subject to the restriction 0
winning, we obtain the final condition listed in E@): <q;<1. Therefore, in order to be physically realized, the
game{q;} must be restricted as follows

(1=py)(1—p3)=p1P2,
a2

(1—d4)(1—=03) =103, 2 Qa>1+ 0s—1 ®
(1=rg)(1=r3)<ryry. and hence, in the special case whase=q.,
If the two B games are combined randomly, the probability
set for the combined game is given by o
s> 1+ 1 (9)

ri=api+(l-aq;, 3

From Eq.(5), the condition that defines the regions of the
parameter space in which two fair games combine to yield a
winning game is given by

where « is the probability that the game characterized by
{p;i} will be chosen. We will typically taker= 3. The third
condition in Eq.(2) now becomes

2—Pa—0a)(2— P3— ) <(p1+ +0y). (4 -1
(2—pPs—04g)(2—pP3—03)<(pP1+d1)(p2+0>) (4) 1 (P4 )q2 it q,>p,
Given that we require the initial games to be fair for 0, Ua 2 (10)
we can use the first two conditions in H@) to substitute for 14 (Ps—1) i g
p; andg;. Hence, p, 92=P2-
(2= pPs—da)(2—Pp3—0a) Figure 1 depicts the regions of parameter space defined by
B _ B _ Egs.(10) and(9) for {p;} given by Eq.(6). In particular, Fig.
< (17p)(1~py) +(1 da)(1~0s) (Pot Q). 1 shows the region in which two fair games combine to yield
P2 a2 a winning game. This is equivalent to the region in which

(5 two losing games combine to yield a winning game for some
value ofe>0. In the Appendix, we derive an expression for
the maximum value ot for which this remains trueg .
Figure 2 shows,,., given by Eq.(A6) using the same
In order to reduce the number of free variables so that thgame se{p;} as in Fig. 1. The value of,..is shown for all
different regions of the parameter space can be displayed ingossible game§q;} given{p;} defined by Eq(6). This plot
three-dimensional figure, Parronda al. [1] made the re- demonstrates the robustness of the Parrondo effect in the
strictionp,=p3. Here, we are going to reduce the number ofpresent case of two history-dependent games.
free variables by appealing to the first two conditions in Eq.
(2). These conditions give; andq, in terms of{p;}, {q;}
(j=2,3,4) such that both games are fair whenO.
We choose a particular gan{@;} and then plot the re- Now we drop the Parrondet al. restriction top,= p3 and
gions in the parameter spac,(qs,qs), which enclose all treat the general case. From E§),

A. Special casg,=p3, 0>=03

B. General casep,#p3, (%03
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FIG. 1. Parameter space for combination of two games in the FIG. 3. Reai f in which fai
special cas@,=ps, 0,=0s with {p,} given by Eq.(6). Region | . 3. Regions of parameter space in which two fair games

depicts the area forbidden by E(). Region Il depicts the area combine to yield a winning game fdip;} given by Eq.(6). The

where the two games combine to yield a winning game. The Whité)lanes indicate the boundaries of these regitmsmselves marked

region in between represents the area excluded by (E@), in | and Il). The unmarked regions are those in which the opposite

which two fair games combine to yield a losing game. The blackeffect occurs. The surfadand the insetshows the boundary of the

dot represents the parameters for the original game of Parronor(?gion forbidden by Eq(8). The black dot represents the original

etal. as described in Refd] for which {g,=3%, q,=3%, gs=1, gialmeq of 1F’a(;ron(lmeé1 al. 1a}s described in Refl1] for which {q;
=2, U2=2, Us=2, Us4=2s-

qa= %}
principle, we could plot this over the three-dimensional axes
1+ (Pa—1) G if Q<1+ p3—1q2, of Fig. 3. This would be the generalization of Fig. 2.
The original combination of gamA and gameB due to
4 (pa—1) ps—1 (1) parrondoet al. (see Sec.)l represents a special case of our
>1+ g, Iif gz>1+ qs- more general treatment. The game considered in Réf.
P2 2 corresponds to combiningp;} as defined by Eq(6) with

{91=3%,9,=3%,935=3,94=3}. In Figs. 1 and 3 the black dot
Figure 3 depicts the regions of parameter space defined bypresents the original game of Parroredal. In both cases
Egs. (12) and (8) for {p;} given by Eq.(6). Equation(11) it can be seen to lie in the region where two losing games
defines two regiondabeled | and Il in Fig. 3 Equation(8)  combine to yield a winning game.
excludes almost all of region | in this case. An expression for Thus, we have derived expressions, E§6) and(11), for
€maxin the general case is derived in the Appendix, &y,), the region of the parameter space in which the Parrondo
given that{q;} is a fair game fore=0. In effect is observed to occur in the case of history-dependent
games being combined with equal probability=f3). We
have also derived expressions for the robustness of the effect,
Eqgs.(A6) and (A7).

1

0By 0.14
& 11l. PERIODIC COMBINATIONS
5 0.6 OF HISTORY-DEPENDENT GAMES
g - Next, we investigate periodic combinations of games.
g Rather than randomly selecting the game to be played at
_ each time step, gamig;} is playeda times and then game
0.2

{q;} is playedb times. This cycle is repeated periodically.

Figure 4 shows the capital after 500 time steps, resulting

from a combination of two games for a range of values of

0 02 04 06 08 1 andb. The capital is greater if the games are switched more
protabili=g, frequently, as found by Parronda al. for the combination

FIG. 2. Plot of the maximum value @ffor which the two losing ~ ©f @ Simple gameA and a history-dependent garBe The
games{p;}, defined by Eq.6), and{q;,02,05,0,} combine to analysis for the periodic case is more complex than for Fhe
yield a winning game. The white lines indicate the locus of pointsfandom case because we can no longer appeal to a single
where €,,,=0. The regions in whiche,,,,<0 correspond to two game formed from a weighted average of two games.
winning games combining to yield a losing game. The region to the Let the elements of the vectar, labeledu;;, be the
left of the dashed line is that excluded by K@), as in Fig. 1. probability of the game being in stafeat timet=i. The
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10 <X.(500)>
5 FIG. 5. lllustration of the time steps at which the stationary
0

statesS, of the transition matrice$, give the probability of finding
the combined game in each of the possible stdtes. an integer
and we take the long time limii.e., N—x).

steps: 2

4
2 Number of

FIG. 4. Value of capital after 500 games averaged over an en- by taking the dot product of the stationary state of the
semble of 5¢10° runs. Gamegp;} [defined by Eq(6)] and{ai}  yansition matrixT,,, with a vector formed from the prob-

={%.3,5.%} are combined periodically foe=0. Game{p} is  apilities of each of the coins from the game played at that
playeda times, then gaméq;} is playedb times, and so on. time step. These vectors arg=(pip,psps) and q
=(01929394), Wherep corresponds t@ in Eq. (13) andq
evolution of the game from; to u; ; 51, can be described as corresponds t® in Eq. (14). The matrix to the right of the
follows: product inT,, corresponds to the game that will be played at
time stept=(a+b)i +n. Therefore, if the matrix to the right
Ui+ asp=BPARY;, (12) is A, we must take the QOt product wigh If it is B, we must
take the dot product witk.
An expression for the average probabil®y,, of a win
1-p; 0 1-ps3 0 for the combined game can thus be found by averaging over
P, 0 Ps 0 all possible c_yclic permutations off,. The gradient,
A (13) grad (X.(t))], is then given by Eq(Al), as before. The
0 1-p2 0 1I-ps|° resulting expressions are lengthy. Each set of valuesanfd
0 [ 0 Pa b yields an expression for gre@.(t))] in terms of
{pi}.{qi}, wherei=1,2,3,4. These expressions are too com-
plex to set out here explicitly. However, we can numerically

1-q, 0 1-qs 0 plot the analytic equivalent of Fig. 4: this is what we have
essentially done in Fig. 6. The lines show the analytic pre-
a1 0 ds 0 diction for the average capital after 500 time steps,
B=l 0o 1-q, 0 1-q.|- (14 (X(500)), found by multiplying Eq{(A1) by 500. Each line
corresponds to a slice through the surface in Fig. 4 at con-
0 Y2 0 s stantb. The error bars indicate one standard deviation on the

mean over ten ensemble averages of the numerical game.
Clearly, this is not a homogeneous Markovian process beEach ensemble average comprises an average over 50 000

cause the transition matrix is not time independent. individual runs.
In order to proceed, we define a homogeneous Markovian

process described by the transition maffixy=BPA? with <X, (500)>

time stepst=(a+b)i, wherei=0,1,2,3... . Consider a 14} b=t

large ensemble of games described by B¢) in the long 12

time limit. Select one of these games at random. The station-

ary stateS, of the homogeneous game defined Ty gives 0 bes

the probability that the selected game will be in each of the 8|l

four possible statesee Table ) at timest=(a+b)i, where 6| bes

i=0,1,23 ... . This stationary state is given by the solution

to the equatiorS,=T;S,. Now we define a new homoge- 41 p=9

neous process; by cyclically permuting the matrices ifiy 5 l\\/’\-\,,_;\\l___

once to the rightle.g., if T,=BAA, thenT;=ABA). The

stationary state of this process gives the probabilities of find- ) n 6 8 10
ing the game, selected from the ensemble, in each of the four Number of steps of game {p;}: a

possible states at timest=(a+b)i+1, where i

=0,1,23... .

. FIG. 6. Comparison of analytical and numerical results for pe-

In the general case, the game formed fromiiktecyclic  yigdic switching. The lines show the analytic predictions at constant
permutation ofT,, T, gives the probability of finding the p, the number of steps of gande;}, for the capital after 500 time
selected game in each state at timega+b)i+n, where  steps. The error bars show one standard deviation on the mean over
i=0,1,23....Thisis illustrated by Fig. 5. We can calculate ten separate ensemble averages, each comprising 50 000 numerical
the overall probability of a win at time stefs=(a+b)i runs.
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<Xc(500)> choosing a switching probability close to 0.5) results in the

8 largest capital gain since this will break up the cycles most

6 effectively. This is indeed confirmed by the results in Figs. 4
and 7.

4
V. SUMMARY

We have demonstrated that the apparently paradoxical ef-
fect of two losing games combining to produce a winning
game also applies to combinations of two history-dependent
games. We derived expressions for the regions of the param-
eter space in which the effect is observed for both random

FIG. 7. The value of the capital after 500 games averaged oveand periodic combinations of these games. We derived ex-
an ensemble of 500000 runs. The same games as in Fig. 4 afgessions for the gradient of the average capital and hence
combined, but this time randomly. Garfig;} is chosen with prob-  the robustness of the Parrondo effect for games combined
ability «. The solid line shows the theoretical result predicted byrandomly or periodically.

Eq. (A3), while the error bargwhich are barely visible since they Our work has therefore expanded the understanding of the
are so smallindicate one standard deviation about the mean capitap 5 rondo effect by demonstrating its existence for new com-
over an ensemble of ten runs. binations of history-dependent games. We are now faced

, ) with the more general question as to what property of the
We can see that the numerical and analytical results agreg,nstituent games guarantees that the Parrondo effect will be

to within one standard deviation. This confirms that the equagpserved. In addition, if we were to combine many games of

tions generated by the analysis presented in this section afeyqre general nature than those used to date, how could we

indeed correct. Thus, we have derived expressions _for thﬁredict whether the effect would emerge or not? We hope

robustness of the Parrondo effect where two historyyhat the present work will stimulate further research on such

dependent games are combined periodically. questions, in addition to pursuing applications of the Par-
rondo effect itself.

02 04 06 08 1
probability: o

IV. VARYING THE SWITCHING PROBABILITY
IN THE RANDOM CASE

. . ACKNOWLEDGMENT
We now examine the dependence of the capital on the

switching probability in the case that the games are randomly We thank Adrian Flitney for helpful comments and sug-
combined. Figure 7 shows the capital after 500 iterationgestions.

plotted against the probability per iteratianthat the game

{pi} will be chosen. The curve is symmetric and demon-

strates that the capital is greatest if the games are switched APPENDIX: DERIVATION OF €, FOR RANDOM

with equal probability. When implementing the games it is COMBINATIONS OF GAMES

necessary to assign values to the results of the coin tosses at . . . . .
y 9 In this appendix, we derive expressions for the maximum

timest=—2,—1 in order to seed the game. This arbitrary . .
choice introduces transients that can slightly bias the finay@lue of €, €may, for which two games that are fair for

results. However, by allowing the game to first run for 100:0L§f ;n t_)m;néopy'elgeatk\:\g nr;?gagﬁii?:é er iteration for the
iterations, this effect can be eliminated. win lose P P

I . . combined game, tha{.(t) will increase or decrease, respec-
The curve in Fig. 7 represents the capital predicted by Eq; .C S .
(A3) plotted for all with the samep;} and{q;}. The error qt|vely. Then the gradient of the capital line for the combined

bars show one standard deviation on either side of the meatr 'c grai{X(1))] is given by
capital, averaged over an ensemble of ten runs. The agree-
ment between the theoretical curve and numerical data is
therefore better than one standard deviation. &st0 or 1, grad (Xc(t))]=2Py,— 1. (A1)
we find(X.(500))=0. These values correspond to just play-
ing oneB game or the other. Since both games are fair for . . .
e=0, the average capital is zero. The fact that the curve i%}ng can derive the following expression @, for a game
then positive for all values o means that combining the rif:
games with any probability € <1 leads to a winning
combined game.
Parrondoet al. showed that combining two losing games _ ri(ra+1-ry)
could lead to a winning game because switching between the PWi”_(l— ra)(2ri+1—rg)+rqry’ (A2)
games can break the cycles that cause the “bad” coins to be
overplayed 1]. We might therefore expect that switching be-
tween the games frequentlgither by reducing andb or by  Substituting for{r;} from Eq. (3) yields
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2[(1=a)q;+ ap ][1+(1-a)g,—(1—a)ds+ a(pa—Pa)]

IR XN =2 (a Ty ¥ (a= Dy 2ap— aps 1+ (a- Dz apal +[(1- )t apy (- @g T ap] © A

Now we reintroducee via the transformationp;,— p; — €, g;— @;— € to obtain

_ 2[a(po—ps)+(1=a)(d2—q4) +1][api+(1—a)q,—€] _1
[—2ap;tap;—2(1-a)q1+(1- o)zt e—1][apst(1-a)qs—e—1]+[api+(1—a)g —€l[ap,+(1—a)d,—€]
(A4)

Any games{p;} and{q;} defined as above will be losing games for all valuegof0. Thus, in order to find the maximum
value of e for which two losing games combine to yield a winning game, we must find the value foi which
grad (X.(t))]=0. We shall consider games combined with equal probability, thereferg. Setting graf{ X.(t))] equal to
zero in Eq.(A4) gives

grad (Xc(1))]

. :_4"‘p1p2+2p3+2p4_p3p4+p2Q1+p1Q2+Q1Q2+ZQ3_p4Q3+ZQ4_P3Q4_Q3Q4
max 2(4+p1tpP2—P3—Patdit 02— 03— da) '

Appealing to the conditiofiEg. (7)] that{q;} is a fair game fore=0 and in the special case whegg=q; andp,=ps, this
becomes

(A5)

_ P2a[1+02(1+p1—Pa)—0g]+ 0ol —3+Pa(2—02) + 02+ P10z + 4]

— A6
€mex 2(1-Ga) - 20,3+ 1 Pa) (A9)

Similarly in the general case,,,, is given by
Pal 10yt daP1+G3(ds— 1) ]+ ol — 3+ pa(2—qs) + Az + qa] +a5p1+ P392(2— Ps—da) (A7)

Emax= 2-204+205(4+P1+ P2~ P3—Pa) +20(02— 03— ds) +203(0s— 1)
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